Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 13(1): 1220, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1735246

ABSTRACT

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Receptors, G-Protein-Coupled/immunology , Renin-Angiotensin System/immunology , Autoantibodies/blood , Autoimmunity , Biomarkers/blood , COVID-19/blood , COVID-19/classification , Cross-Sectional Studies , Female , Humans , Machine Learning , Male , Multivariate Analysis , Receptor, Angiotensin, Type 1/immunology , Receptors, CXCR3/immunology , SARS-CoV-2 , Severity of Illness Index
2.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1631216

ABSTRACT

Angiotensin II receptor type 1 (AT1R) and endothelin-1 receptor type A (ETAR) are G-protein-coupled receptors (GPCRs) expressed on the surface of a great variety of cells: immune cells, vascular smooth cells, endothelial cells, and fibroblasts express ETAR and AT1R, which are activated by endothelin 1 (ET1) and angiotensin II (AngII), respectively. Certain autoantibodies are specific for these receptors and can regulate their function, thus being known as functional autoantibodies. The function of these antibodies is similar to that of natural ligands, and it involves not only vasoconstriction, but also the secretion of proinflammatory cytokines (such as interleukin-6 (IL6), IL8 and TNF-α), collagen production by fibroblasts, and reactive oxygen species (ROS) release by fibroblasts and neutrophils. The role of autoantibodies against AT1R and ETAR (AT1R-AAs and ETAR-AAs, respectively) is well described in the pathogenesis of many medical conditions (e.g., systemic sclerosis (SSc) and SSc-associated pulmonary hypertension, cystic fibrosis, and allograft dysfunction), but their implications in cardiovascular diseases are still unclear. This review summarizes the current evidence regarding the effects of AT1R-AAs and ETAR-AAs in cardiovascular pathologies, highlighting their roles in heart transplantation and mechanical circulatory support, preeclampsia, and acute coronary syndromes.


Subject(s)
Autoantibodies/metabolism , Cardiovascular Diseases/immunology , Receptor, Angiotensin, Type 1/immunology , Receptor, Endothelin A/immunology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Collagen/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Hum Immunol ; 83(2): 130-133, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1509823

ABSTRACT

The stimulation of AT1R (Angiotensin II Receptor Type 1) by Angiotensin II has, in addition to the effects on the renin-angiotensin system, also pro-inflammatory effects through stimulation of ADAM17 and subsequent production of INF-gamma and Interleukin-6. This pro-inflammatory action stimulate the cytokine storm that characterizes the most severe forms of SARS-CoV-2 infection. We studied the effect of AT1Rab on the AT1R on 74 subjects with SARS-CoV-2 infection with respiratory symptoms requiring hospitalization. We divided the patients into 2 groups: 34 with moderate and 40 with severe symptoms that required ICU admission. Hospitalized subjects showed a 50% reduction in the frequency of AT1Rab compared to healthy reference population. Of the ICU patients, 33/40 (82.5%) were AT1Rab negative and 16/33 of them (48.5%) died. All 7 patients positive for AT1Rab survived. These preliminary data seem to indicate a protective role played by AT1R autoantibodies on inflammatory activation in SARS-CoV-2 infection pathology.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Receptor, Angiotensin, Type 1/immunology , Adult , Aged , Aged, 80 and over , Autoantigens/immunology , Female , Hospitalization , Humans , Italy , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology
4.
PLoS One ; 16(9): e0257016, 2021.
Article in English | MEDLINE | ID: covidwho-1484849

ABSTRACT

BACKGROUND: Activation of the immune system is implicated in the Post-Acute Sequelae after SARS-CoV-2 infection (PASC) but the mechanisms remain unknown. Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II (Ang II) resulting in decreased activation of the AT1 receptor and decreased immune system activation. We hypothesized that autoantibodies against ACE2 may develop after SARS-CoV-2 infection, as anti-idiotypic antibodies to anti-spike protein antibodies. METHODS AND FINDINGS: We tested plasma or serum for ACE2 antibodies in 67 patients with known SARS-CoV-2 infection and 13 with no history of infection. None of the 13 patients without history of SARS-CoV-2 infection and 1 of the 20 outpatients that had a positive PCR test for SARS-CoV-2 had levels of ACE2 antibodies above the cutoff threshold. In contrast, 26/32 (81%) in the convalescent group and 14/15 (93%) of patients acutely hospitalized had detectable ACE2 antibodies. Plasma from patients with antibodies against ACE2 had less soluble ACE2 activity in plasma but similar amounts of ACE2 protein compared to patients without ACE2 antibodies. We measured the capacity of the samples to inhibit ACE2 enzyme activity. Addition of plasma from patients with ACE2 antibodies led to decreased activity of an exogenous preparation of ACE2 compared to patients that did not have antibodies. CONCLUSIONS: Many patients with a history of SARS-CoV-2 infection have antibodies specific for ACE2. Patients with ACE2 antibodies have lower activity of soluble ACE2 in plasma. Plasma from these patients also inhibits exogenous ACE2 activity. These findings are consistent with the hypothesis that ACE2 antibodies develop after SARS-CoV-2 infection and decrease ACE2 activity. This could lead to an increase in the abundance of Ang II, which causes a proinflammatory state that triggers symptoms of PASC.


Subject(s)
Autoantibodies/blood , COVID-19/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/blood , Angiotensin II/blood , Angiotensin II/immunology , Angiotensin-Converting Enzyme 2/genetics , Autoantibodies/immunology , Autoantibodies/isolation & purification , COVID-19/blood , COVID-19/virology , Female , Humans , Male , Peptidyl-Dipeptidase A/blood , Receptor, Angiotensin, Type 1/blood , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/immunology , Renin-Angiotensin System/genetics , Renin-Angiotensin System/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
5.
J Autoimmun ; 122: 102683, 2021 08.
Article in English | MEDLINE | ID: covidwho-1267726

ABSTRACT

The renin-angiotensin system (RAS) plays a major role in COVID-19. Severity of several inflammation-related diseases has been associated with autoantibodies against RAS, particularly agonistic autoantibodies for angiotensin type-1 receptors (AA-AT1) and autoantibodies against ACE2 (AA-ACE2). Disease severity of COVID-19 patients was defined as mild, moderate or severe following the WHO Clinical Progression Scale and determined at medical discharge. Serum AA-AT1 and AA-ACE2 were measured in COVID-19 patients (n = 119) and non-infected controls (n = 23) using specific solid-phase, sandwich enzyme-linked immunosorbent assays. Serum LIGHT (TNFSF14; tumor necrosis factor ligand superfamily member 14) levels were measured with the corresponding assay kit. At diagnosis, AA-AT1 and AA-ACE2 levels were significantly higher in the COVID-19 group relative to controls, and we observed significant association between disease outcome and serum AA-AT1 and AA-ACE2 levels. Mild disease patients had significantly lower levels of AA-AT1 (p < 0.01) and AA-ACE2 (p < 0.001) than moderate and severe patients. No significant differences were detected between males and females. The increase in autoantibodies was not related to comorbidities potentially affecting COVID-19 severity. There was significant positive correlation between serum levels of AA-AT1 and LIGHT (TNFSF14; rPearson = 0.70, p < 0.001). Both AA-AT1 (by agonistic stimulation of AT1 receptors) and AA-ACE2 (by reducing conversion of Angiotensin II into Angiotensin 1-7) may lead to increase in AT1 receptor activity, enhance proinflammatory responses and severity of COVID-19 outcome. Patients with high levels of autoantibodies require more cautious control after diagnosis. Additionally, the results encourage further studies on the possible protective treatment with AT1 receptor blockers in COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Autoantibodies/blood , Autoantigens/immunology , COVID-19/immunology , Receptor, Angiotensin, Type 1/immunology , Aged , Autoantibodies/immunology , COVID-19/blood , Female , Humans , Male , Middle Aged , Renin-Angiotensin System/immunology , SARS-CoV-2
6.
Front Immunol ; 12: 684142, 2021.
Article in English | MEDLINE | ID: covidwho-1247870

ABSTRACT

Background: Lung histopathology demonstrates vasculopathy in a subset of deceased COVID19 patients, which resembles histopathology observed in antibody-mediated lung transplant rejection. Autoantibodies against angiotensin II type 1 receptor (AT1R) and Endothelin receptor Type A (ETAR) have been demonstrated in antibody-mediated rejection and may also be associated with severe COVID19 infection. Objective To assess AT1R and ETAR auto-antibodies in COVID19 patients and controls, and explore their association with disease course. Methods: 65 hospitalized patients with COVID19 infection were included. Clinical and laboratory findings were retrospectively assessed. Patients with unfavorable disease course, admitted at the intensive care unit and/or deceased during hospital admission (n=33) were compared to admitted COVID19 patients with favorable disease course (n=32). The presence of antinuclear antibodies (ANA) and auto-antibodies against AT1R or ETAR in peripheral blood were compared between COVID19 with unfavorable and favorable disease course and age matched controls (n=20). Results: The presence of ANA was not significantly different between COVID19 patients with unfavorable (n=7/33; 21%) and favorable disease course (n=6/32; 19%) (p= 0.804) and controls (n=3/20; 15%). Auto-antibodies against AT1R were significantly increased in unfavorable disease course (median 14.59 U/mL, IQR 11.28 - 19.89) compared to favorable disease course (median 10.67 U/mL, IQR 8.55 - 13.0, p< 0.01). ETAR antibody titers were also significantly increased in unfavorable disease course (median 7.21, IQR 5.0 - 10.45) as compared to favorable disease course (median 4.0, IQR 3.0 - 6.0, p <0.05). Conclusion: Auto-antibodies against AT1R and ETAR are significantly increased in COVID19 patients with an unfavorable disease course.


Subject(s)
Autoantibodies/blood , COVID-19/immunology , Receptor, Angiotensin, Type 1/immunology , Receptor, Endothelin A/immunology , Adult , Aged , Aged, 80 and over , COVID-19/blood , Female , Humans , Intensive Care Units , Male , Middle Aged , Netherlands , Receptor, Angiotensin, Type 1/blood , Receptor, Endothelin A/blood , Retrospective Studies , Risk Assessment , Severity of Illness Index
7.
Int Arch Allergy Immunol ; 181(6): 467-475, 2020.
Article in English | MEDLINE | ID: covidwho-235502

ABSTRACT

After the advent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the outbreak of coronavirus disease 2019 (COVID-19) commenced across the world. Understanding the Immunopathogenesis of COVID-19 is essential for interrupting viral infectivity and preventing aberrant immune responses before a vaccine can be developed. In this review, we provide the latest insights into the roles of angiotensin-converting enzyme II (ACE2) and Ang II receptor-1 (AT1-R) in this disease. Novel therapeutic strategies, including recombinant ACE2, ACE inhibitors, AT1-R blockers, and Ang 1-7 peptides, may prevent or reduce viruses-induced pulmonary, cardiac, and renal injuries. However, more studies are needed to clarify the efficacy of these therapeutics. Furthermore, considering the common role of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway in AT1-R expressed on peripheral tissues and cytokine receptors on the surface of immune cells, potential targeting of this pathway using JAK inhibitors (JAKinibs) is suggested as a promising approach in patients with COVID-19 who are admitted to hospitals. In addition to antiviral therapy, potential ACE2- and AT1-R-inhibiting strategies, and other supportive care, we suggest other potential JAKinibs and novel anti-inflammatory combination therapies that affect the JAK-STAT pathway in patients with COVID-19. Since the combination of MTX and baricitinib leads to outstanding clinical outcomes, the addition of baricitinib to MTX might be a potential strategy.


Subject(s)
Angiotensin I/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antiviral Agents/therapeutic use , Azetidines/therapeutic use , Coronavirus Infections/drug therapy , Janus Kinases/genetics , Methotrexate/therapeutic use , Pandemics , Peptide Fragments/therapeutic use , Pneumonia, Viral/drug therapy , Sulfonamides/therapeutic use , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Progression , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/immunology , Molecular Targeted Therapy/methods , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Purines , Pyrazoles , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/immunology , SARS-CoV-2 , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction/genetics , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL